Корзина
9 отзывов
Лабор. обор. от High Technology Inc. и OPTI Medical SystemsЛабораторное оборуд
Фотоэлектроколориметры, фотометры, спектрофотометры
Контакты
«Медтехника-Дента», ЧП Гаврилюк Ю. В.
Наличие документов
Знак Наличие документов означает, что компания загрузила свидетельство о государственной регистрации для подтверждения своего юридического статуса компании или физического лица-предпринимателя.
+38055242-08-96
+38055244-41-44
+38044361-79-45
+38098613-50-14
+38050979-50-11
Юрий Гаврилюк
УкраинаХерсонская областьХерсонул. Потемкинская (Карла Маркса) 13 магазин «Медтехника-Дента»73010
gavriluk21
Карта

Фотоэлектроколориметры, фотометры, спектрофотометры

Фотоколори́метр — оптический прибор для измерения концентрации веществ в растворах. Действие колориметра основано на свойстве окрашенных растворов поглощать проходящий через них свет тем сильнее, чем выше в них концентрация окрашивающего вещества. В отличие от спектрофотометра, измерения ведутся в луче не монохроматического, а полихроматического узко спектрального света, формируемого светофильтром[1]. Применение различных светофильтров с узкими спектральными диапазонами пропускаемого света позволяет определять по отдельности концентрации разных компонентов одного и того же раствора. В отличие от спектрофотометров, фотоколориметры просты, недороги и при этом обеспечивают точность, достаточную для многих применений.

 

Фотоколори́метр — оптический прибор для измерения концентрации веществ в растворах. Действие колориметра основано на свойстве окрашенных растворов поглощать проходящий через них свет тем сильнее, чем выше в них концентрация окрашивающего вещества. В отличие от спектрофотометра, измерения ведутся в луче не монохроматического, а полихроматического узко спектрального света, формируемого светофильтром[1]. Применение различных светофильтров с узкими спектральными диапазонами пропускаемого света позволяет определять по отдельности концентрации разных компонентов одного и того же раствора. В отличие от спектрофотометров, фотоколориметры просты, недороги и при этом обеспечивают точность, достаточную для многих применений.

Колориметры разделяются на визуальные и объективные (фотоэлектрические) — фотоколориметры. В визуальных колориметрах свет, проходящий через измеряемый раствор, освещает одну часть поля зрения, в то время как на другую часть падает свет, прошедший через раствор того же вещества, концентрация которого известна. Изменяя толщину l слоя одного из сравниваемых растворов или интенсивность I светового потока, наблюдатель добивается, чтобы цветовые тона двух частей поля зрения были неотличимы на глаз, после чего по известным соотношениям между l, I и с может быть определена концентрация исследуемого раствора.

Фотоэлектрические колориметры (фотоколориметры) обеспечивают большую точность измерений, чем визуальные; в качестве приёмников излучения в них используются фотоэлементы (селеновые и вакуумные), фотоэлектронные умножителифоторезисторы (фотосопротивления) и фотодиоды. Сила фототока приёмников определяется интенсивностью падающего на них света и, следовательно, степенью его поглощения в растворе (тем большей, чем выше концентрация). Помимо фотоэлектрического колориметра (фотоколориметра) с непосредственным отсчётом силы тока, распространены компенсационные колориметры, в которых разность сигналов, соответствующих стандартному и измеряемому растворам, сводится к нулю (компенсируется) электрическим или оптическим компенсатором (например, клином фотометрическим); отсчёт в этом случае снимается со шкалы компенсатора. Компенсация позволяет свести к минимуму влияние условий измерений (температуры, нестабильности свойств элементов колориметра) на их точность. Показания колориметра не дают сразу значений концентрации исследуемого вещества в растворе — для перехода к ним используют градуировочные графики, полученные при измерении растворов с известными концентрациями.

Измерения с помощью колориметра отличаются простотой и быстротой проведения. Точность их во многих случаях не уступает точности других, более сложных методов химического анализа. Нижние границы определяемых концентраций в зависимости от метода составляют от 10−3 до 10−8 моль/л.